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Abstract

The ultimate goal of human beings is to elevate wisdom and sustain good health and
happiness, that can be achieved via inner engineering (IE) and AI Digital Twins,
collectively forming the so-called Internet of Minds (IOM) and Revolution 5.0.

In this paper, we shall present some ground breaking research in leveraging the AI
Digital Twin and inner engineering technologies to transform wisdom and healthcare.
The paper will elucidate the fundamental principles of digital twins, their construction,
and their wide-ranging applications. We shall highlight through a case study of
diabetes management how digital twins and AI enable personalized development
and treatment, predict disease progression, and optimize interventions, ultimately
improving personalized outcomes in inner engineering toward enlightenment.

1. Introduction

The ultimate goals of human beings vary greatly across cultures, philosophies, and
individuals. However, it boils down to two important elements: health and wisdom,
including personal growth, happiness and enlightenment, that are the most
common and timeless aspirations that humans strive for, and that can be achieved
via digital twins and inner engineering.

The healthcare industry as well as inner engineering are on the verge of a revolution,
driven by the convergence of technological advancements, AI, data analytics, and
personalized medicine. One of the most promising innovations in this space is the
Digital Twin, a virtual replica of a physical system, process, or, in this case, a
human being. By creating a digital duplicate of a patient's physiology, anatomy, and
medical history, healthcare providers can simulate, predict, and optimize treatment
outcomes, via AI methods, leading to more effective, personalized, and cost-efficient
care.

The potential benefits of AI Digital Twins in healthcare and inner engineering are
vast, ranging from improved disease diagnosis and treatment to enhanced patient
engagement, outcomes, personal growth and fulfillment. Moreover, Digital Twins can
facilitate the development of more effective prevention strategies, reduce medical
errors, and optimize resource allocation. As the healthcare industry continues to
grapple with the challenges of an aging population, rising healthcare costs, and
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increasingly complex medical conditions, the adoption of Digital Twins is poised to
play a transformative role in shaping the future of healthcare and wisdom
development.

Inner Engineering is a comprehensive framework for personal growth, self-
awareness, and spiritual evolution. The key components comprise: self-awareness,
consciousness, energy, and spirituality. By applying the principles and practices of
inner engineering, individuals can transform their lives, achieving a state of inner
peace and happiness, thereby reaching their full potential. The Digital Twin is
deemed to offer an effective approach to inner engineering.

This paper aims to explore the concept of Digital Twins in healthcare and inner
engineering, discussing its potential applications, benefits, and challenges. We will
delve into the current state of Digital Twin technology via a case study of diabetes
management, its relevance to various healthcare and personal growth domains, and
offer a glimpse into future research of Digital Twin in inner engineering.

2. Background and Related Work

2.1 Background
The concept of digital twins was first introduced in 2002 by Dr. Michael Grieves, a
researcher at the University of Michigan. Initially, digital twins were used in the
aerospace and defense industries to simulate the behavior of complex systems.
Over time, the concept of digital twins has expanded to other industries, including
manufacturing, healthcare, and energy. We foresee that it can be well applicable to
inner engineering for personal growth, wisdom development and spiritual
enlightenment.

A digital twin is a virtual replica of a physical object, system, or process. It is a digital
representation of the real-world entity, which can be used to simulate, predict, and
optimize its behavior. The concept of digital twins has been around for several
decades, but it has gained significant attention in recent years due to advances in
technologies such as artificial intelligence (AI), machine learning (ML), and the
Internet of Things (IoT). Since AI and ML are nowadays become integral parts of
digital twins, we shall refer to such digital twins as as AI digital twins, or simply
Digital Twins or AI Twins or AI Clones.

Just like AI Agent, Digital Twin belongs to the Foundational Model Layer in the AI
stack shown in Figure 1. Most of the opportunities lie however in the AI unlimited
applications, illustrated in Applications Layer. Both AI Agent and Digital Twin
technologies have received paramount investment in 2024 and are expected to
surge further in 2025 and beyond.
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Figure 1. AI stack (image credit: Andrew Ng’s keynote talk at Snowflake BUILD 2024
https://www.snowflake.com/build)

Digital twins have several key characteristics that distinguish them from other digital
representations. These include:

● Real-time Data Integration: Digital twins integrate real-time data from
sensors, IoT devices, and other sources to create an accurate and up-to-date
representation of the physical entity.

● Simulation and Prediction: Digital twins use advanced algorithms and
simulation techniques to predict the behavior of the physical entity under
different scenarios.

● Virtual-Physical Interaction: Digital twins enable virtual-physical interaction,
allowing users to interact with the virtual representation of the physical entity.

● Autonomy and Self-Optimization: Digital twins can operate autonomously
and self-optimize their behavior based on real-time data and simulation
results.

It is interesting to note that a physical entity can have multiple associated digital
twins. This concept is often referred to as "multi-twinning" or "hierarchical
twinning."

In this context, multiple digital twins can represent different aspects, scales, or levels
of abstraction of the same physical entity. Here are some possible scenarios:

● Component-level twins: A complex physical system, like an aircraft engine,
can have multiple digital twins representing individual components, such as
the compressor, turbine, or fuel system.

● System-level twins: A physical entity, like a building, can have multiple digital
twins representing different systems, such as HVAC, electrical, or plumbing.

https://www.snowflake.com/build
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● Scale-dependent twins: A physical entity, like a city, can have multiple digital
twins representing different scales, such as a detailed model of a single
building, a neighborhood, or the entire city.

● Domain-specific twins: A physical entity, like a patient, can have multiple
digital twins representing different domains, such as a medical twin for health
monitoring, a biomechanical twin for movement analysis, or a nutritional twin
for dietary planning.

Having multiple digital twins associated with a physical entity can provide a more
comprehensive understanding of its behavior, performance, and interactions with its
environment.

Naturally, multiple digital twins can communicate with each other [Das 2022]. This
concept is often referred to as "digital twin synchronization" or "digital twin
communication."

Digital twin communication enables the exchange of data, information, and insights
between multiple digital twins, allowing them to:

● Synchronize their state: Ensure consistency and accuracy across multiple
digital twins.

● Share knowledge and insights: Enable digital twins to learn from each other
and improve their decision-making capabilities.

● Coordinate actions: Facilitate collaboration and coordination between digital
twins to achieve common goals.

● Improve overall system perfẻomance: Enhance the efficiency, reliability,
and resilience of the physical system being represented by the digital twins.

Digital twin communication can be achieved through various means, including:

● APIs (Application Programming Interfaces): Enable digital twins to
communicate with each other through standardized APIs.

● Message Queues: Allow digital twins to exchange messages and data
through message queues.

● Data Lakes: Provide a centralized repository for digital twins to share and
access data.

● Cloud-based Platforms: Offer a scalable and secure environment for digital
twins to communicate and interact.

Examples of digital twin communication include:

● Smart Cities: Digital twins of buildings, transportation systems, and energy
grids can communicate to optimize energy efficiency, traffic flow, and public
services.
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● Industrial Automation: Digital twins of machines, production lines, and
supply chains can communicate to optimize production, reduce downtime,
and improve product quality.

● Healthcare [Kam 2021]: Digital twins of patients, medical devices, and
healthcare systems can communicate to improve patient outcomes, optimize
treatment plans, and streamline clinical workflows.

Investment in digital twins has been increasing drastically in the past few years and
is expected to surge in 2025, driven by increasing adoption across various industries.

2.2. Key Investment Areas:

Here are some practical digital twin systems in use:

● Industrial and Manufacturing

1. GE's Digital Twin for Power Plants: GE's digital twin platform monitors and
optimizes power plant performance in real-time.
2. Siemens' Digital Twin for Industrial Automation: Siemens' digital twin platform
simulates and optimizes industrial automation systems.
3. Dassault Systèmes' Digital Twin for Aerospace: Dassault Systèmes' digital twin
platform simulates and optimizes aerospace systems.

● Infrastructure and Construction

1. Singapore's Digital Twin for Urban Planning: Singapore's digital twin platform
simulates and optimizes urban planning and development.
2. New York City's Digital Twin for Infrastructure Management: New York City's
digital twin platform monitors and optimizes infrastructure performance.
3. Bentley Systems' Digital Twin for Construction: Bentley Systems' digital twin
platform simulates and optimizes construction projects.

● Healthcare

1. IBM's Digital Twin for Patient Care: IBM's digital twin platform simulates and
optimizes patient care pathways.
2. Philips' Digital Twin for Medical Imaging: Philips' digital twin platform simulates
and optimizes medical imaging procedures.
3. Stanford Health Care's Digital Twin for Hospital Operations: Stanford Health
Care's digital twin platform monitors and optimizes hospital operations.

● Transportation
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1. NASA's Digital Twin for Space Exploration: NASA's digital twin platform simulates
and optimizes space exploration missions.
2. Volkswagen's Digital Twin for Vehicle Development: Volkswagen's digital twin
platform simulates and optimizes vehicle development.
3. Siemens' Digital Twin for Rail Network Optimization: Siemens' digital twin platform
simulates and optimizes rail network performance.

● Energy and Utilities

1. National Grid's Digital Twin for Energy Network Optimization: National Grid's
digital twin platform simulates and optimizes energy network performance.
2. Shell's Digital Twin for Oil and Gas Operations: Shell's digital twin platform
simulates and optimizes oil and gas operations.
3. Duke Energy's Digital Twin for Smart Grid Management: Duke Energy's digital
twin platform monitors and optimizes smart grid performance.

2.3. Major Digital Twin Platforms and Tools:

Major companies that provide tools for building digital twins include the following:

● Siemens: Siemens provides a range of tools and platforms for building digital
twins, including Siemens MindSphere, Siemens Simcenter, and Siemens NX.

● Dassault Systèmes: Dassault Systèmes provides a range of tools and
platforms for building digital twins, including Dassault Systèmes
3DEXPERIENCE, Dassault Systèmes CATIA, and Dassault Systèmes
SIMULIA.

● PTC: PTC provides a range of tools and platforms for building digital twins,
including PTC ThingWorx, PTC Windchill, and PTC Creo.

● General Electric (GE): GE provides a range of tools and platforms for
building digital twins, including GE Predix, GE Digital Twin, and GE Asset
Performance Management.

● Microsoft: Microsoft provides a range of tools and platforms for building
digital twins, including Microsoft Azure Digital Twins, Microsoft Azure IoT Hub,
and Microsoft Azure Machine Learning.

● Ansys: Ansys provides a range of tools and platforms for building digital twins,
including Ansys Twin Builder, Ansys Autonomy, and Ansys Speos.

● Altair: Altair provides a range of tools and platforms for building digital twins,
including Altair Inspire, Altair Activate, and Altair HyperWorks.

● SAP: SAP provides a range of tools and platforms for building digital twins,
including SAP Leonardo, SAP IoT, and SAP Predictive Maintenance.

● Oracle: Oracle provides a range of tools and platforms for building digital
twins, including Oracle IoT Cloud, Oracle Digital Twin, and Oracle Predictive
Maintenance.
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These companies provide a range of tools and platforms for building digital twins in
the following categories:

● Computer-Aided Design (CAD) software: For designing and simulating
digital twins.

● Simulation software: For simulating the behavior of digital twins.
● Internet of Things (IoT) platforms: For connecting digital twins to physical

systems and devices.
● Cloud computing platforms: For hosting and managing digital twins.
● Artificial intelligence (AI) and machine learning (ML) platforms: For

analyzing data from digital twins and making predictions.

3. Digital Twin for Diabetes Management as an Example [Ras 2024]

Diabetes management is a complex and dynamic process, requiring personalized
and adaptive approaches to achieve optimal glucose control. Recent advances in
Artificial Intelligence (AI) and Digital Twin technologies have paved the way for
innovative solutions in diabetes management [Chu 2023]. This section explores the
concept of Digital Twin for diabetes management, highlighting its potential benefits,
technical requirements, and future directions. This case study is based on
collaborative substantive research of Professor Juan Li’s research group at NDSU
[Ras 2024].

3.1 Concept and Architecture

Diabetes management research covers essentially several important areas,
including:

● Risk prediction models seek to identify individuals at heightened risk based on
genetic, lifestyle, and environmental factors, opening doors to proactive or
preventative interventions [Apa 2021] [Ndj 2020].

● Personalized treatment planning aims to tailor medication, diet, and exercise
regimens to an individual’s unique biology and preferences, maximizing
therapeutic outcomes and minimizing side effects [Sub 2014].

● Preventive strategies focus on identifying modifiable factors like diet, physical
activity, and exposure to environmental toxins, aiming to reduce the likelihood
of developing diabetes or to slow disease progression in those already
diagnosed [Bac 2013].

● Integration of the above reseach areas in a holistic framework, allowing for
effective personalized and dynamic risk assessments, treatment plans, and
preventive measures.

This case study results in the following contributions:
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● Holistic Approach: Via integrating various physiological, lifestyle, social,
environmental, and dietary factors in a unified framework.

● A patient-centric framework: The proposed framework is built around personal
health knowledge graphs (PHKGs) to capture the complex and evolving
relationships among diverse data sources such as patient history, lifestyle,
preferences, goals, and environmental factors and patients’ self-acquired
knowledge.

● Data Integration and Interoperability: The ontology HL7 standards [HL7 2023]
is adopted in the framework to promote seamless interaction across devices,
applications, programs, and institutional boundaries.

● Extensibility and Adaptability: PHKGs offer a flexible structure, allowing them
to expand adaptively with dynamic new knowledge about the patient.

● Demonstrated Use Cases: We showcase the usage of the digital twin
framework for real-world diabetes management applications, including
predicting glucose levels, optimizing insulin dosage, offering lifestyle
recommendations, tailored dietary advice, and health data visualization.

Fundamentally, a Digital Twin for diabetes management is a virtual replica of an
individual's physiological system, integrating AI and Machine Learning (ML)
algorithms to simulate glucose dynamics, predict treatment outcomes, and optimize
personalized care. The architecture of an AI Digital Twin for diabetes management
typically consists of the following components:

● Data Integration Layer: This layer aggregates and integrates data from
various sources, including electronic health records (EHRs), continuous
glucose monitoring systems (CGMS), insulin pumps, and wearable devices.

● Physiological Modeling Layer: This layer employs mathematical models to
simulate glucose dynamics, insulin sensitivity, and other physiological
processes relevant to diabetes management.

● AI and ML Layer: This layer utilizes AI and ML algorithms to analyze data,
identify patterns, and make predictions about treatment outcomes and
glucose control [Apa 2021].

● Decision Support Layer: This layer provides personalized recommendations
for diabetes management, including insulin dosing, medication adjustments,
and lifestyle modifications.

3.2 Construction of Digital Twins for Diabetes Management

This process involves the generation dynamic virtual representations of a patient’s
health state that enable the simulation of behavior and prediction of outcomes and
allow for personalized insights. These virtual representations are designed to be
adaptive, continuously updating with real-time data to reflect the patient’s current
health status accurately. Figure 2 shows the framework of the proposed digital twins,
so-called GlycoTwin. This framework integrates various data sources to construct a



9

comprehensive model of the individual’s health. The framework comprises multiple
layers, starting with ontology development, data collection and integration, personal
health knowledge graph creation, and applications.

Figure 2. GlycoTwin: Digital Twin for personalized diabetes management.

Details of the framework for constructing Digital Twins are presented in the
remainder of this section.

3.2.1. Ontology Development

At the cornerstone is the development of a robust and standardized ontology,
aligned with HL7 FHIR standards [Kio 2019] to ensure interoperability and
adherence to established industry practices. This health ontology is intricately
designed to offer a comprehensive vocabulary and articulate the complex
relationships inherent within the personal health domain, acting as the structural
foundation upon which our digital twin models are constructed.
Our methodology for ontology development embraces a systematic, top-down ap-
proach, initiating with broad health-related categories such as “Medical Condition”
and progressively dissecting these into more specific subcategories like “Diabetes”.
This hierarchical structure allows for a nuanced categorization of health conditions.
Each concept within the ontology is enriched with properties that detail its attributes
and the relationships it shares with other concepts. These are divided into object
properties, which connect different concepts within the ontology, and data properties,
which link concepts to specific values, facilitating a detailed and relational
representation of health data.
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This robust framework is instrumental in elevating the level of personalization and
efficacy within healthcare delivery. By laying down a solid foundation, we are able to
tailor healthcare solutions to individual needs, thereby optimizing the overall
healthcare experience. This commitment to enhancing personalization directly
translates into more effective healthcare outcomes, ensuring that each patient
receives care that is specifically designed to meet their unique health requirements.

3.2.2. Data Collection and Integration
Our approach to data collection and integration is expansive and meticulous. We
tap into a wide array of healthcare data sources, including but not limited to
electronic health records (EHRs), inputs from wearable devices, mobile health
applications, and direct patient-generated data. Each of these sources plays a
pivotal role in painting a comprehensive picture of a patient’s health landscape,
offering unique insights that are integral to the construction of a detailed and
accurate digital twin.

A rigorous quality control process is initiated to ensure the integrity and usability of
the collected data. This critical phase addresses common data quality issues, such
as missing values, inconsistencies, and outliers, which are inherent challenges in
dealing with diverse healthcare datasets. Following the rectification of these issues,
the data undergo a transformation process. This crucial step involves mapping the
raw data onto the predefined concepts and relationships within our health ontology.
The aim here is to achieve a unified and standardized representation of the data,
ensuring that it aligns seamlessly with the structured framework of our ontology,
thereby facilitating an accurate and effective data integration.
The cornerstone of our data integration strategy is the innovative use of the GLAV
(Global–Local as View) framework [30]. This advanced framework stands out from
traditional data integration approaches, such as GAV (Global as View) and LAV
(Local as View), by offering a more dynamic and flexible mapping capability. The
essence of GLAV lies in its ability to support bidirectional mappings, which is
particularly advantageous when dealing with the voluminous and intricate nature of
healthcare datasets. This flexibility is crucial for accommodating the complex
interrelations and the heterogeneity inherent in healthcare data, thereby ensuring a
more cohesive and comprehensive integration process.
To further refine the data integration process and enhance the accuracy of mappings,
we employ Conditional Random Fields (CRFs). These advanced probabilistic
graphical models are renowned for their proficiency in pattern recognition and their
ability to learn complex patterns within data. By leveraging CRFs, we are able to
discern and accurately map the intricate features of source data—such as column
names and data types—onto the relevant concepts within our ontology. This level of
precision in mapping is pivotal for ensuring that the integrated data are not only
accurate but also meaningful within the con- text of the digital twins, enabling a richer
and more nuanced representation of the patient’s health status. Through this
comprehensive and nuanced approach to data collection and integration, we ensure
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the assembling of a rich and coherent dataset. This dataset forms the backbone of
our digital twins, providing the depth and breadth of information necessary for
simulating realistic and detailed virtual representations of patients’ health conditions,
thereby paving the way for personalized and precise healthcare interventions.

3.2.3. Personal Health Knowledge Graph (PHKG) Construction
The construction of the personal health knowledge graph (PHKG) is a critical phase
that follows the meticulous integration and transformation of health data. This pivotal
transformation marks the transition of raw health data into a structured format that is
amenable to semantic querying and reasoning, laying the groundwork for the robust
instantiation of the knowledge graph. The PHKG is sculpted based on the intricacies
of the predefined ontology, serving as a dynamic representation of a patient’s health
landscape.
The instantiation process within the PHKG begins with the systematic identification
and creation of specific instances for each ontological concept derived from the
integrated health data. For instance, an individual blood glucose measurement
recorded in the health data is instantiated within the graph as a particular
manifestation of the “Blood Glucose Level” concept. This step transforms abstract
ontological concepts into concrete instances that reflect real-world data points
related to the patient’s health status. Simultaneously, the relationships among these
instances, as delineated by the ontology through a network of object and data
properties, are materialized as edges within the graph. These edges serve as the
connective tissue between concept instances, weaving a complex web of
relationships that mirrors the intricate, multifaceted nature of health data. For
example, a “has Symptom” relationship might be instantiated to connect a “Diabetes”
concept instance with a “Frequent Urination” symptom instance, thereby
encapsulating the symptomatology associated with the condition within the patient’s
health profile.
The PHKG transcends its role as a mere data repository, emerging as a
sophisticated and integrated knowledge representation framework capable of
encapsulating a wide spectrum of health-related information. This includes, but is not
limited to, diagnostic information, medication regimes, laboratory results, sensor-
derived data, lifestyle parameters, and subjective patient experiences. The
comprehensive nature of the PHKG makes it an invaluable resource for
underpinning simulations and analyses within the digital twin framework, enabling a
nuanced and holistic understanding of the patient’s health dynamics.

3.2.4. Digital Twin Generation
The generation of a digital twin for each patient is a sophisticated process that
harnesses the depth and breadth of the data encapsulated within the personal health
knowledge graph (PHKG). This rich repository of semantically structured health data
forms the bedrock upon which the digital twin is constructed, enabling a dynamic and
personalized virtual representation of each patient’s health status.
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The digital twin employs advanced simulation models that are meticulously
calibrated using comprehensive data derived from the PHKG. These models can
simulate various physiological and metabolic processes relevant to the patient’s
condition, providing a virtual environment in which the consequences of different
interventions can be explored. The simulation models are designed to mimic the
patient’s response to various treatments, lifestyle modifications, and potential
disease-progression pathways. This allows healthcare providers to visualize the
potential outcomes of different therapeutic strategies, facilitating informed decision
making and personalized care planning. Moreover, the models can simulate the
long-term implications of these interventions, aiding in the prevention and
management of potential complications.
In parallel, the digital twin leverages machine learning algorithms that are trained on
the heterogeneous and comprehensive dataset provided by the PHKG. These
algorithms are adept at uncovering complex patterns within the data, including subtle
correlations between various health indicators, treatment responses, and
environmental or lifestyle factors [Beu 2022]. By analyzing these patterns, the
algorithms can generate predictive insights into the patient’s future health trajectory,
identify risk factors for disease progression, and suggest preemptive measures to
mitigate these risks.
The digital twin’s machine learning component is not static; it continuously evolves
as new data are incorporated into the PHKG, ensuring that the twin remains up to
date with the patient’s current health status and the latest medical knowledge. This
dynamic learning process enhances the precision of the digital twins’ predictions and
recommendations, making them increasingly personalized and accurate over time.

3.3. Use Cases of GlycoTwin, Digital Twin for Diabetes Management

The Digital Twin, with rich data integration and simulation power offers several
benefits and advantages for diabetes management, realized by (but not limited to)
the following use cases:

3.3.1. Personalized Blood Glucose Regulation [Sar 2023]

● Digital Twin’s Role: The digital twin provides historical patient data and a
simulation environment to train and test insulin optimization strategies.

● Algorithms: Reinforcement learning (RL), specifically the Soft Actor–Critic
(SAC) algorithm, refines insulin dosages with its entropy-driven reward
function. The SAC algorithm balances precision with safe exploration to find
optimal solutions for the individual.

● Outcomes: The digital twin enables personalized, data-driven insulin
optimization, enhancing blood glucose control while reducing risks like
hyperglycemia and hypoglycemia. Our method’s efficacy was assessed based
on three parameters: blood glucose concentration, the likelihood of
experiencing hypoglycemia or hyperglycemia, and the duration within the
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euglycemic zone (70–180 mg/dL), which is considered the ideal blood glucose
interval to reduce diabetes-related complications. The outcomes indicated that
our approach effectively maintained blood glucose within the desired desired
range, reducing the risk of extreme fluctuations and increasing the time spent
in the euglycemic zone. This demonstrates the power of digital twins to drive
individualized care. Figure 3 demonstrates the application of Soft Actor–Critic
(SAC)-based reinforcement learning (RL) on a patient’s digital twin to
enhance glucose level regulation, aiming to minimize the percentage of time
that blood glucose level is in the risk range and stabilize overall glucose levels.

Figure 3. Optimized insulin dosage and resulting blood glucose control.
(a) Simulated blood glucose trajectory under personalized insulin regimen.
(b) Insulin doses are determined by the digital twins trajectory under

personalized and administered after each meal.

3.3.2. Gllucose Prediction for Individualized Care [Yan 2023]

● Digital Twin’s Role: The digital twin framework provides a structured dataset
that integrates critical patient-specific factors such as glucose trends, food
intake, insulin usage, and more. This comprehensive dataset is pivotal for the
development and training of effective predictive models.
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● Algorithms: Recurrent Neural Networks (RNNs) are ideal for analyzing
time-series data within the digital twins. These networks identify complex
patterns in individual glucose trajectories.

● Outcomes: The predictive models powered by the digital twins generate
individualized glucose forecasts, enabling proactive care adjustments. These
personalized predictions assist both patients and healthcare providers in
making informed decisions to maintain blood glucose levels within the optimal
range. As depicted in Figure 4, we integrated RNNs with our digital twins to
predict glucose values, achieving an average Root Mean Square Error
(RMSE) of 19.83 mg/dL, which signifies the models’ precision based on the
digital twins’ data. This indicates a high level of accuracy in glucose prediction,
which is critical for effective diabetes management. This metric reflects the
model’s ability to provide reliable forecasts that can be used in clinical settings.

Figure 4. GlycoTwin: Digital Twin for blood glucose prediction

Figure 5 displays information gathered over a span of 10 days for an adult patient,
showing their glucose, insulin, and carbohydrate (CHO) levels at 3 min intervals.
Glucose levels are indicated on the left axis, while insulin and CHO levels are on the
right. CHO values remain at zero except during mealtimes, and insulin levels remain
stable until after meals when additional insulin is administered to manage glucose
levels. The figure showcases the patient’s use of self-designed food intake and time
inputs, enabling the digital twin to monitor glucose levels and adjust interventions
accordingly. The Digital Twin offers continuous monitoring and personalized
interventions based on real-time data. Moreover, it allows for detailed examination of
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daily or hourly data, as demonstrated by the data from day 5 to day 6 within a 24-
hour timeframe.

Figure 5. GlycoTwin: Digital Twin for data visualization
(For monitoring of glucose, insulin, and carbohydrate (CHO) levels)

3.3.3. Healthcare Data Digital Twin Explorer [Hen 2024]

● Digital Twin’s Role: The structured PHKG and its rich relationships between
health concepts form the core of this application.

● Interaction Modes: As shown in Figures 6(a) and 6(b), two interfaces
provide flexibility:

1. Keyword Search: Natural language processing converts user queries
into SPARQL for knowledge graph retrieval. Semantic links offer further
exploration avenues.

2. Navigation Interface: Dropdown trees and graph visualizations allow
users to explore the PHKG’s hierarchy.
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● Outcomes: The digital twin serves as a powerful tool for patients, granting
them the ability to comprehend their health data independently and at their
own pace. This empowerment in data literacy is instrumental in fostering
patient engagement and active participation in collaborative care processes.
Moreover, this highlights the digital twin’s potential to enhance patient-
centered care by providing a user-friendly platform for health data exploration.

(a) Keyword search (b) Navigation interface (drop-down tree)

Figure 6. GlycoTwin: Digital Twin for health data explorer.

3.3.4. Personalized Meal Recommendation [Ami 2023]

● Digital Twin’s Role: The PHKG integrates information about a patient’s
health condition, diabetes management plan, dietary preferences, and
allergies. This comprehensive data profile fuels the meal recommendation
engine.

● Logic Rules and Reasoning: Embedded within the knowledge graph are
rules that reason about the patient’s health data and generate personalized
meal suggestions. For example, rules might suggest meals that meet specific
calorie goals, avoid allergens, and align with diabetes management guidelines.

● Outcomes: Our digital twin extends its capabilities beyond mere data
provision; it delivers practical, personalized dietary recommendations that
cater to each individual’s unique needs. This enables patients to make well-
informed food selections that help regulate their blood sugar levels and
enhance their overall health. As demonstrated in Figure 7, we have
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developed a mobile application that leverages our digital twin to offer
individualized meal suggestions for patients with diabetes.

Figure 7. GlycoTwin: Digital Twin for personalized meal recommendations

3.4. Summary of Benefits, Challenges and Future Directions of Digital Twin for
Diabetes Management

3.4.1. Benefits

1. Personalized Medicine: The AI Digital Twin (or Digital Twin for short)
enables personalized diabetes management by simulating individualized
glucose dynamics and predicting treatment outcomes.

2. Improved Glucose Control: The Digital Twin optimizes insulin dosing and
medication adjustments, leading to improved glucose control and reduced risk
of hypoglycemia and hyperglycemia.

3. Enhanced Patient Engagement: The Digital Twin empowers patients to take
an active role in their diabetes management, providing personalized insights
and recommendations for lifestyle modifications.

4. Reduced Healthcare Costs: The Digital Twin reduces healthcare costs by
minimizing the need for hospitalizations, emergency department visits, and
other costly interventions.

3.4.2 Technical Requirements and Challenges

The development and implementation of an Digital Twin for diabetes management
require several technical requirements and pose challenges, including:
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1. Data Quality and Integration: The Digital Twin requires high-quality,
integrated data from various sources, including EHRs, CGMS, insulin pumps,
and wearable devices.

2. Physiological Modeling and Simulation: The Digital Twin requires accurate
and robust physiological models to simulate glucose dynamics and predict
treatment outcomes.

3. AI and ML Algorithm Development: The Digital Twin requires the
development and training of AI and ML algorithms to analyze data, identify
patterns, and make predictions.

4. Interoperability and Scalability: The Digital Twin requires interoperability
with various healthcare systems and devices, as well as scalability to
accommodate large numbers of patients and data.

3.4.3. Future Directions

The AI Digital Twin for diabetes management is a rapidly evolving field, with several
future directions and opportunities, including:

1. Integration with Wearable Devices and Mobile Health Applications: The
AI Digital Twin can be integrated with wearable devices and mobile health
applications to provide real-time glucose monitoring and personalized
recommendations.

2. Development of Closed-Loop Systems: The AI Digital Twin can be used to
develop closed-loop systems that automate insulin dosing and glucose control.

3. Expansion to Other Chronic Diseases: The AI Digital Twin can be applied
to other chronic diseases, such as hypertension, cardiovascular disease, and
chronic kidney disease.

4. Development of Explainable AI and Transparency: The AI Digital Twin
requires the development of explainable AI and transparency to ensure that
patients and healthcare providers understand the decision-making process
and recommendations.

4. Digital Twin for Inner Engineering - A Perspective

The ultimate goal of human beings is to elevate wisdom and sustain good health.
We have discussed the application of Digital Twin in healthcare, specifically in
diabetes management. In this section, we provide a glimpse on how Digital Twin
can be used in elevating wisdom, via so-called inner engineering. The construction
process of Digital Twin for healthcare is essentially similar to the one for inner
engineering for wisdom development.

4.1 Concepts and Background of Inner Engineering
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Inner Engineering is a comprehensive framework for personal growth, self-
awareness, and spiritual evolution, developed by Sadhguru, a renowned Indian yogi,
mystic, and author. Inner engineering is a scientific approach to exploring the
human interior, enabling individuals to engineer their inner world and transform their
lives, through cultivation of the following:

● Self-Awareness: Understanding and being aware of one's thoughts,
emotions, and actions.

● Consciousness: Awareness of the present moment, thereby developing
wisdom and high-level of consciousness.

● Energy: Balancing and optimizing one's physical, mental, and emotional
energy, thereby cultivating pure energy from within to be in tune with the
central energy of the universe.

● Spirituality: Exploring the higher dimensions of human existence, beyond the
physical dimension, by reaching the state of complete equilibrium, serenity
and nothingness.

Fundamentally, inner engineering targets wisdom (or super consciousness)
development, which requires a multidimensional approach that incorporates spiritual
practices, self-inquiry, and lifestyle changes. Here are some key steps in inner
engineering:

4.1.1 Spiritual Practices

● Meditation: Regular meditation practice helps quiet the mind, increases self-
awareness, and expands consciousness.

● Prayer or Mantra Repetition: Focus on a higher power or a personal mantra
that can be invoked vocally or silently to create spiritual vibrations to cultivate
a sense of connection and inner peace.

● Yoga, Qigong or KiDao: combines physical postures, breathing techniques,
and meditation to balance the body, mind, and spirit.

4.1.2 Self-Inquiry and Reflection
● Journaling: Record your thoughts, emotions, and insights to identify patterns,

gain clarity, and develop self-awareness.
● Self-Reflection: Schedule regular time for introspection, asking yourself

questions like "What am I grateful for?" "What can I improve?" or "What is my
purpose?". With perserverant mantra invocations and spiritual practice, self-
reflection will become instantaneous.

● Seek Feedback: Engage with mentors, coaches, or trusted fellow friends to
share spiritual experience and gain new perspectives and insights.

4.1.3 Lifestyle Changes
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● Nature Connection: Spend time in nature to cultivate a sense of awe,
wonder, and interconnectedness.

● Healthy Habits: Establish a balanced lifestyle, including regular exercise,
wholesome nutrition, and sufficient sleep.

● Mindful Relationships: Nurture relationships that support your growth, and
practice empathy, compassion, and active listening.

4.1.4 Intellectual and Creative Pursuits
● Lifelong Learning: Engage in continuous learning, exploring subjects that

fascinate you, such as philosophy, psychology, or spirituality.
● Creative Expression: Pursue creative activities, like art, music, writing, or

dance, to tap into your inner world and express yourself authentically.

4.1.5 Energetic and Vibrational Alignment
● Energy Healing: Explore modalities like Taichi, Vovi, acupuncture, or sound

healing to balance and align your energy.
● Vibrational Resonance: Surround yourself with positive influences, such as

uplifting music, inspiring books, or supportive community.

4.1.6 Patience and Persistence
● Cultivate Patience: Recognize that developing wisdom and super

consciousness is a lifelong journey, requiring patience, dedication, and self-
compassion.

● Embrace Challenges: View challenges and setbacks as opportunities for
growth, learning, and self-refinement.

Needless to say, the path to wisdom and super consciousness is unique to each
individual. Therefore, constructing individual Digital Twin for wisdom elevation
management will be essential for inner engineering. In the same way of constructing
a Digital Twin for healthcare, we should create a Digital Twin for inner engineering
using the same framework and the prescribed practice of inner engineering.

4.2 On the Construction of Digital Twin for Inner Engineering

The construction of Digital Twin for inner engineering should be analogous to the
one for diabetes management or healthcare. Some general points are highlighted in
this section, while detailed research is still ongoing.

4.2.1. Ontology Development

This wisdom-related spirituality ontology needs to be intricately designed to offer a
comprehensive vocabulary and articulate the complex relationships inherent within
the spiritual domain, acting as the structural foundation upon which the digital twin
models are constructed. The vocabulary would be a refined subset of the union of
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all terminologies of all religions, as well as the cognitive para-psychology and part of
the neuroscience. This ontology development methodology is expected to adopt a
systematic, top-down structure analogous to the one in the healthcare domain. For
example, the “Wisdom” concept can have different levels of advancement such as: 1)
Ultimate Wisdom, 2) Spiritual and Divine Realms, 3) Energy (Chakras) Realm, 4)
Human and Individual Development, 5) Spiritual Growth and Development, 6)
Intellectual and Knowledge Development. These are divided into object properties,
which connect different concepts within the ontology, and data properties, which link
concepts to specific values, facilitating a detailed and relational representation of
spirituality data.

4.2.2. Data Collection and Integration

The approach to data collection and integration is expansive and meticulous. We
should gain access to various static and dynamic spirituality data sources, including
but not limited to church record of the person, historical record, school records,
electronic health records (EHRs), social media records of interactions, inputs from
wearable devices, daily online recorded activities, and direct personal-generated
data, including journals. Thus the digital “akashic” record is dynamically created
and maintained. Each of these sources plays a pivotal role in painting a
comprehensive picture of an individual state of spiritual advancement, offering
unique insights that are integral to the construction of a detailed and accurate digital
twin. So, a broad dataset including all personal actions and inner states should be
recorded.

4.2.3. Personal Spiritual Knowledge Graph (PSKG) Construction
The construction of the personal spiritual knowledge graph (PHKG) is a critical
phase that follows the meticulous integration and transformation of spirituality data.
This pivotal transformation marks the transition of raw spirituality data into a
structured format that is amenable to semantic querying and reasoning, laying the
groundwork for the robust instantiation of the knowledge graph. The PSKG is
sculpted based on the intricacies of the predefined ontology, serving as a dynamic
representation of the indivitual state of spiritual advancement.

4.2.4. Digital Twin Generation for inner engineering
The generation of a digital twin for each individual is a sophisticated process that
harnesses the depth and breadth of the data encapsulated within the personal
spirituality knowledge graph (PSKG). This rich repository of semantically structured
spiritual data forms the bedrock upon which the digital twin is constructed, enabling a
dynamic and personalized virtual representation of each person’s spiritual status.
The digital twin employs advanced simulation models that are meticulously
calibrated using comprehensive data derived from the PSKG.
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These models can simulate various physiological and metabolic processes relevant
to the patient’s condition, providing a virtual environment in which the consequences
of different interventions can be explored. The simulation models are designed to
mimic the patient’s response to various treatments, lifestyle modifications, and
potential disease-progression pathways. This allows healthcare providers to
visualize the potential outcomes of different therapeutic strategies, facilitating
informed decision making and personalized care planning. Moreover, the models
can simulate the long-term implications of these interventions, aiding in the
prevention and management of potential complications.
In parallel, the digital twin leverages machine learning algorithms that are trained on
the heterogeneous and comprehensive dataset provided by the PHKG. These
algorithms are adept at uncovering complex patterns within the data, including subtle
correlations between various health indicators, treatment responses, and
environmental or lifestyle factors. By analyzing these patterns, the algorithms can
generate predictive insights into the patient’s future health trajectory, identify risk
factors for disease progression, and suggest preemptive measures to mitigate these
risks.
The digital twin’s machine learning component is not static; it continuously evolves
as new data are incorporated into the PHKG, ensuring that the twin remains up to
date with the patient’s current health status and the latest medical knowledge. This
dynamic learning process enhances the precision of the digital twins’ predictions and
recommendations, making them increasingly personalized and accurate over time.

4.3 Ideas of a Digital Twin Model for Inner Engineering

Developing a viable Digital Twin model for Inner Engineering is a major undertaking.
In this section, we present a preliminary illustrative example for constructing a Digital
Twin for Inner Engineering, based on the principle of ontology described in the
previous (sub)subsections.

● Components of the Digital Twin
1. Individual Profile: A comprehensive profile of the individual, including physical,
emotional, mental, and spiritual characteristics.
2. Mind Model: A dynamic model of the individual's mind, incorporating their thoughts,
emotions, and behaviors.
3. Energy System: A model of the individual's energy system, including their chakras,
aura, and energy flows.
4. Spiritual Growth Model:A model of the individual's spiritual growth and
development, incorporating their values, beliefs, and spiritual practices.
5. Environmental Factors: A model of the individual's environment, including their
social, cultural, and physical surroundings.

● Data Sources
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1. User Input: The individual will provide input on their thoughts, emotions, behaviors,
and spiritual practices.
2.Wearable Devices: Wearable devices such as smartwatches, fitness trackers, and
EEG headbands will provide data on the individual's physical and emotional states.
3. Mobile Apps: Mobile apps such as meditation and mindfulness apps will provide
data on the individual's spiritual practices and progress.
4. Social Media: Social media platforms will provide data on the individual's social
interactions and environmental factors.

● Analytics and Insights
1. Pattern Recognition: The Digital Twin will recognize patterns in the individual's
thoughts, emotions, behaviors, and spiritual practices.
2. Predictive Analytics: The Digital Twin will use predictive analytics to forecast the
individual's future states and outcomes.
3. Personalized Recommendations: The Digital Twin will provide personalized
recommendations for the individual's spiritual growth and development.

● Benefits
1. Improved Self-Awareness: The Digital Twin will provide the individual with a
deeper understanding of their thoughts, emotions, behaviors, and spiritual practices.
2. Enhanced Spiritual Growth: The Digital Twin will provide personalized
recommendations for the individual's spiritual growth and development.
3. Better Decision-Making: The Digital Twin will provide the individual with predictive
analytics and insights to inform their decision-making.

● Technical Requirements
1. Cloud Infrastructure: A cloud-based infrastructure will be required to store and
process the individual's data.
2. Artificial Intelligence: Generative AI and deep machine learning algorithms,
including the use of AI agents will be required to analyze the individual's data and
provide personalized recommendations.
3. Data Visualization: Data visualization tools will be required to provide the
individual with a user-friendly interface to view their data and insights.

● Security and Privacy
1. Data Encryption: The individual's data will be encrypted to ensure confidentiality
and security.
2. Access Control: Access to the Digital Twin will be restricted to authorized
personnel and the individual themselves.
3. Informed Consent: The individual will provide informed consent for the collection
and use of their data.

4.4 Metrics in the Digital Model
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Here are some potential metrics that could be involved in the Digital Twin model for
Inner Engineering:

● Individual Profile Metrics
1. Emotional Intelligence (EI): A measure of the individual's self-awareness, self-
regulation, motivation, empathy, and social skills.
2. Personality Traits (PT): Metrics such as the Big Five personality traits (openness,
conscientiousness, extraversion, agreeableness, and neuroticism).
3. Values and Beliefs (VB) A measure of the individual's core values and beliefs,
such as spirituality, compassion, and fairness.

● Mind Model Metrics
1. Thought Patterns: Metrics such as thought frequency, thought duration, and
thought content (e.g., positive, negative, neutral).
2. Emotional States: Metrics such as emotional intensity, emotional duration, and
emotional frequency (e.g., happiness, sadness, anger).
3. Mindfulness: Metrics such as mindfulness frequency, mindfulness duration, and
mindfulness quality (e.g., focused attention, open monitoring).
4. Love (L): A measure of the individual's level of love, compassion, and kindness
towards themselves and others.
5.Wisdom (W): A measure of the individual's level of wisdom, insight, and
discernment.
6. Courage (C): A measure of the individual's level of courage, perseverance, and
resilience.

● Energy System Metrics
1. Chakra Balance: Metrics such as chakra energy levels, chakra balance, and
chakra alignment.
2. Aura Quality: Metrics such as aura color, aura clarity, and aura strength.
3. Energy Flow: Metrics such as energy flow rate, energy flow direction, and energy
flow blockages.
4. Astral and Soul Traveling: Metrics of the individual's frequency of astral and soul
traveling experiences.

● Spiritual Growth Model Metrics
1. Spiritual Practices: Metrics such as practice frequency, practice duration, and
practice quality (e.g., meditation, prayer, yoga).
2. Spiritual Experiences: Metrics such as experience frequency, experience duration,
and experience intensity (e.g., feelings of connection, feelings of peace).
3. Spiritual Values: Metrics such as values alignment, values clarity, and values
commitment (e.g., compassion, forgiveness, gratitude).
4. Spiritual Balance Index (SBI)_: A composite measure of the individual's level of
inner peace, love, wisdom and courage.
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5. Transcendence Quotient (TQ)_: A composite measure of the individual's level of
transcendence of the ego and the material world, including their experience of
nothingness and emptiness.

● Environmental Factors Metrics
1. Social Connections: Metrics such as social connection frequency, social
connection duration, and social connection quality (e.g., supportive, nurturing,
challenging).
2. Physical Environment: Metrics such as physical environment quality, physical
environment safety, and physical environment comfort (e.g., natural light, air quality,
noise level) [Beu 2022].
3. Cultural and Societal Influences: Metrics such as cultural and societal influence
frequency, cultural and societal influence duration, and cultural and societal influence
intensity (e.g., media consumption, social norms, cultural values).

These metrics can be used to track progress, identify areas for improvement, and
provide personalized recommendations for spiritual growth and development.

5. Conclusions

In recent years, especially in 2024, we have seen a tremendous surge of research
and development activities on AI in both the private and public sectors, in particular
in the domains of Generative AI, AI Agents and Digital Twins. In this paper, we
presented an overview of the state of the art of Digital Twins, with a ground breaking
research of Digital Twins as applied to diabetes management, as an example. We
also present some preliminary ideas on the construction of a Digital Model for Inner
Engineering, for elevating wisdom and happiness, aiming at enhancing the quality of
life. In the foreseeable future, we envisage that every human being will have
multiple Digital Twins, supported by multiple AI agents, giving rise to billions of active
Digital Twins in the cyberspace. These Digital Twins will communicate and interwork
among themselves and with multiple AI agents to form the so-called Internet of
Minds (IOM) transforming healthcare, spirituality, happiness and longevity in the
Revolution 5.0. Physical human entities may die, but their existences in terms of
Digital Twins, that carry their personal characteristics, can “live” forever, diminishing
the boundaries between/among the earthly world and the multiverse.
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