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Abstract—Objective: This study advances neuroprosthetic de-
sign by leveraging neural interface and artificial intelligence (AI)
to enable seamless translation of motor intent into intuitive,
lifelike control of prosthetic devices. Methods: Our approach is
founded on three key innovations. First, we develop neuromod-
ulation microchips and devices for acquiring high-fidelity pe-
ripheral nerve signals from microelectrode implants. Second, we
design and train AI models based on recurrent neural networks
(RNN) to decode neural patterns and accurately predict motor
intent. Third, we create a prototype neuroprosthetic hand that
integrates all components into a portable, self-contained system.
Results: We demonstrate that acquired nerve signals contain
distinct neural signatures for individual hand gestures, which can
be decoded by deep learning AI with superior accuracy compared
to traditional machine learning techniques. Clinical validation
shows the decoder can predict 15 degrees of freedom (DOF)
in regression tasks, with a mean squared error (MSE) ranging
from 0.001 to 0.01. An optimized classification model achieves
95–96% accuracy in distinguishing movements of the five fingers.
When deployed on the prototype neuroprosthetic hand, the AI
model enables amputees to control individual prosthetic fingers
precisely and intuitively in real time. Conclusion & Significance:
This work bridges human peripheral nerves with advanced AI to
enable precise, intuitive control of prosthetic devices. It represents
a transformative step toward next-generation neuroprosthetics,
with the potential to significantly improve the quality of life for
individuals with motor impairments.

Index Terms—artificial intelligence, deep learning, peripheral
nerve, neural decoder, neural interface, neuroprosthesis

I. INTRODUCTION

NEUROPROSTHETICS aims to restore or replace lost
or impaired body functions by establishing an efficient

connection between the human mind and machines. Among
its various applications, restoring upper limb functionality
remains one of the greatest challenges due to the complexity
of the human hand and its extensive sensory innervation
[35]. Advances in robotics and material sciences have enabled
the development of prosthetic hands capable of mimicking
complex, lifelike movements. Notable examples of state-of-
the-art systems include the DEKA Luke Arm [30], [31], the
APL ARM [16], and the DLR Hand Arm system [9]. However,
a critical gap persists: the absence of an intuitive interface that
allows amputees to fully control all degrees of freedom (DOF)
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Fig. 1. (A) Concept of a dexterous and intuitive neuroprosthetic hand,
facilitated by connecting the human mind with AI through a neural interface.
(B) Prototype neuroprosthetic hand developed in this work to realize this
concept.

of these sophisticated prosthetic hands [3]. Without effective
control, even the most advanced prosthetic arms fail to meet
the functional needs of users.

Motor control signals for prosthetic control can be inter-
cepted at various levels: the brain, muscles, or peripheral
nerves, each with distinct advantages and limitations. Brain or
cortical decoding systems [1], [11], [12], [14] using implanted
microelectrode arrays provide sufficient neural information for
near-natural, individual finger control. Systems like BrainGate
[33] and Neuralink [21] are promising candidates for future
commercialization. However, their invasiveness raises con-
cerns about safety, practicality, and long-term reliability. On
the other hand, surface electromyography (EMG) signals from
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Fig. 2. Fully-integrated Neuronix microchips and the Scorpius neuromodulation device enable bidirectional neural interface. (B) Specification comparison
between Scorpius and a commercial neuromodulation system.

Fig. 3. (A) Overview of the mirror bilateral paradigm to collect training dataset for the AI neural decoder. (B) Photo of the experiment setup with one of the
amputees.

residual muscles, commonly used in non-invasive prosthetics,
typically allow only sequential control of basic grasp patterns
[6]. EMG-based pattern recognition systems [5], [10], [15]
can provide limited control, but remain unintuitive, unnatural,
and challenging to scale for higher DOF. Targeted muscle
reinnervation (TMR) addresses some EMG system limitations,
offering more intuitive control, but it requires complex surgery
with uncertain outcomes [2].

This work focuses on motor decoding signals obtained from
the amputee’s residual peripheral nerves, a promising approach
that strikes a balance between invasiveness and functional-
ity. Peripheral nerve interfaces are less invasive than brain-
based systems while still providing sufficient information for
control and enabling sensory feedback. However, acquiring
and interpreting nerve signals poses significant challenges due
to poor signal-to-noise ratio (SNR), stimulation artifacts, and
environmental interference. Recent advancements in micro-
electrodes [29], [32], bioelectronics [28], and machine learning
algorithms [20] have addressed many of these challenges,
making peripheral nerve interfaces increasingly viable. Previ-
ous studies [13], [36], [37] demonstrate that peripheral nerve
interfaces can sustain bidirectional communication channels
with sufficient bandwidth for prosthetic control. Additionally,
machine learning algorithms have proven effective in decoding
motor intent from nerve signals [7], [8]. Tactile and proprio-

ceptive feedback delivered through peripheral nerves enhances
dexterity and control of prosthetic hands [4], [34].

The remainder of this manuscript is organized as follows:
Section 2 describes the design of the neural interface de-
vices, AI neural decoder, and neuroprosthetic hand. Section
3 presents experimental results, including peripheral nerve
signal acquisition, motor decoding performance, and real-
world testing of the neuroprosthetic hand. Section 4 discusses
the implications of this work and potential future directions.
Finally, Section 5 concludes the manuscript.

II. METHODS

A. Neural Interface Microchips and Devices

Figure 2(A) shows the neural interface microchips-Neuronix
and neuromodulation devices-Scorpius that we have developed
to enable a high-performance bioelectric neural interface,
allowing computers to effectively “talk” to the brain. These
hardware systems are built on innovative design techniques
pioneered in our work, including the frequency-shaping (FS)
amplifier [38], [39], redundant sensing analog-to-digital con-
verter (RS-ADC) [22], [23], super-resolution digital-to-analog
converter (SR-DAC) [17], [40], and redundant crossfire (RXF)
neurostimulator [27], [41]. The Neuronix microchips integrate
high-performance neural recording and high-precision neural
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Fig. 4. (A) Overview of the data processing pipeline to decode motor intent. (B) Architecture of the offline AI neural decoder based on an RNN with
LSTM layers. (C) Architecture of the online AI neural decoder, featuring GRU layers and optimized for real-time inference on the Jetson Nano platform. (D)
Comparison of specifications between offline and online models.

stimulation functionalities. These chips are capable of ac-
quiring low-noise neural signals from neuronal populations
while simultaneously delivering precisely controlled electrical
stimulation to modulate the activity of the same neurons.
Neuronix chips are embedded into Scorpius devices, which are
miniaturized neuromodulation systems designed to interface
with microelectrodes, facilitating bidirectional communication
between a computer and human peripheral nerves.

Figure 2(B) compares the specifications of the Scorpius
system to those of a commercial neuromodulation system.
The proposed system features a substantially smaller size
and weight, making it ideal for implantable and wearable
applications, while also exhibiting enhanced sensitivity and
specificity in detecting neural signals. Scorpius devices un-
dergo rigorous validation through extensive in vitro and in vivo
animal experiments before deployment in human amputees.
The combination of high system resolution, miniaturization,
and low-power allow it to isolate weak nerve signals from
large-amplitude artifacts and interferences, which is the key
to enable in multi-DOF motor decoding using deep neural

networks.

B. Deep Learning AI Neural Decoder

Training dataset: Figure 3(A, B) summarizes the human
experimental paradigm to collect training data for the AI
model. The study involves two transradial amputees and one
partial hand amputee. Each amputee have four microelectrode
arrays implanted in the median and ulnar nerves, connected to
two Scorpius devices via percutaneous connectors.The motor
decoding dataset are collected using the mirrored bilateral
paradigm. Nerve signals are recorded from the injured hand
while ground-truth movements from the able hand. Patients
perform different gestures with the able hand while imagining
the same movements with the injured/phantom hand simul-
taneously. The gestures include flexing individual fingers and
common gestures such as fist/grip, index pinch, etc., which are
combination of muliple fingers. While instrinsic muscles in the
injured hand are lost, control signals originated brain are still
present strongly and can be captured via residual peripehral
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Fig. 5. (A) Overview and (B) implementation of the portable, self-contained prototype neuroprosthetic hand, integrating all key components for real-time
control.

nerves with our neural interface. Scorpius system records 16
channels of nerve signals from selected electrodes with highest
SNR at a sampling rate of 10 kHz. The dataglove captures 15
DOF including finger flexion/extension, abduction/adduction,
and thumb-palm crossing. The dataset is divided into 80% for
training and 20% for validation.

Neural decoder: Figure 4(A) provides an overview of the
data processing pipeline used to decode motor intents from
nerve signals. Initially, raw neural data undergo filtering and
downsampling to eliminate unwanted components and focus
on the bandwidth that contains relevant neural information.
Next, the feature extraction stage serves two critical purposes:
reducing the input data dimensionality and emphasizing com-
ponents with the desired information. Various techniques can
be employed at this stage to significantly reduce complexity
and enhance the efficiency and accuracy of the subsequent
deep neural networks. Finally, the deep learning model pro-
cesses the extracted features to predict the trajectory of each
DOF, which can then be utilized to control the prosthetic hand.

Figure 4(B) shows the architecture of the offline AI neural
decoder, which is based on a recurrent neural network (RNN)
with long short-term memory (LSTM) layers. RNN were
chosen for this task thanks to their proven effectiveness in
processing time-series data. This model performs regressive
prediction of 15 DOF offline, which allow validating that the
acquired nerve signals contain sufficient neural information for
dexterous control of multiple DOF. The input to the model is
the spectrogram of nerve signals, calculated for frequencies
below 3 kHz. The spectrogram serves as a feature extrac-
tion step, reducing the input dimensionality while preserving
critical neural patterns. The network architecture consists of
21 convolutional layers, two LSTM layers, two attention
layers, and an output layer. The architecture is optimized
by incrementally adding individual layers and monitoring the
decoder’s performance using 5-fold cross-validation, until no
further improvement is observed and the model shows signs
of overfitting.

Figure 4(C) shows the architecture of the online AI neural
decoder, optimized for real-time control of a prosthetic hand.
We employed several techniques to drastically reduce the
model’s complexity while maintaining predictive power for

practical applications. The model performs classification for
the five fingers - the maximum DOF supported by most
commercial prosthetic hands. The input data for the online
decoder consists of 14 temporal features computed from the
neural signals using a sliding window with a 20 ms step. These
features are extracted from a narrower frequency band (25–600
Hz), which captures the majority of the neural activity’s power.
The architecture includes one convolutional layer, two gated
recurrent unit (GRU) layers, one attention layer, and an output
layer. GRU is used instead of LSTM to improve the runtime
efficiency. As shown in Figure 4(D), the optimized model
has approximately 16 times fewer parameters than the offline
decoder, which is a critical for achieving real-time inference
on portable platforms like the Jetson Nano.

We utilize the Adam optimizer to train the models with
default parameters (β1 = 0.99, β2 = 0.999) and a weight
decay regularization of L2 = 10−5. The minibatch size is set
to 38, with each training epoch comprising 10 minibatches.
The learning rate is initialized at 0.005 and reduced by a factor
of 10 when the training loss plateaued for two consecutive
epochs. For the offline decoding, 15 individual models are
trained with the same architecture; each model processes data
from all input channels and predicts one DOF. This approach
allows us to assess the predictive performance of each DOF
independently. For the online model, depending on the specific
dataset, a single model is often sufficient to decode all five
DOF simultaneously.

C. Portable, Self-contained Neuroprosthetic Hand

Figure 5 shows an overview of the prototype neuroprosthetic
hand, designed as a portable, self-contained unit that integrates
all essential components: the Scorpius nerve interface, AI
neural decoder, motor controller, and battery. Two Scorpius
devices are connected to microelectrodes, enabling the record-
ing of 16 channels of nerve signals. The raw nerve signals
are transmitted to the Jetson Nano platform via USB cables,
where they undergo further processing, including filtering,
downsampling, feature extraction, and ultimately feeding into
the AI neural decoder. The AI model is pre-trained on an exter-
nal computer using previously acquired datasets. The trained
parameters are then uploaded to the Jetson Nano module,
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Fig. 6. (A) Sample of mirror bilateral training data, showing nerve signals alongside dataglove movement. (B) Spectrogram of selected channels, highlighting
unique neural signatures associated with specific gesture. (C) Examples of spike clusters isolated from the nerve signals.

which performs inference in real-time. A customized carrier
board is designed to supply power to the Jetson Nano and
provide digital isolation for the Scorpius devices to minimize
recording noise. Powered by the Tegra X1 SoC and Maxwell
GPU (472 GFLOPs), the Jetson Nano runs the AI model to
process neural signal features and predict movements of five
fingers in real-time. Predictions are generated every 25 - 50 ms
(20 - 40 Hz) with a time latency of 50 - 75 ms and are sent to
the motor controller to actuate individual prosthetic fingers,
producing the corresponding gestures. A customized motor
controller board is designed to replace the internal electronics
of the i-Limb hand, providing access to individual DC motors
embedded in each finger. The entire system is powered by a
7.4 V, 2200 mAh Li-ion battery pack, enabling approximately
3 - 4 hours of continuous use.

In addition, the prosthetic hand is equipped with touch sen-
sors at the fingertips, which modulate the pattern of electrical
stimulation to provide touch sensory feedback. This electrical
stimulation is generated by the Scorpius device and delivered
back to the amputee’s peripheral nerves through the same
neural interface, as described in [27], [41]. This bidirectional
communication enables a more lifelike and intuitive user
experience by not only decoding motor intent but also restoring
a sense of touch.

III. RESULTS

A. Nerve Signals Contain Unique Neural Signatures of Indi-
vidual Hand Gestures

Figure 6(A) presents a sample of mirror bilateral training
data, including 16-channel nerve signals and corresponding

data glove movement. In this example, the amputee alternates
repetitively between fist/grip and rest gestures. Distinct nerve
signal patterns are observable across different channels during
each gesture. Further analysis of filtered data in low (30–600
Hz) and high (300–3000 Hz) frequency bands reveals diverse
waveform components, such as voluntary compound action
potentials (vCAPs) and single-axon spike clusters as shown in
Figure 6(C). Figure 6(B) shows the spectrogram of selected
channels CH-2 and CH-3, where the SNR is most pronounced.
Each hand gesture exhibits a unique spectro-temporal signa-
ture, closely correlated with finger movements. The signature
is complex and not always obvious to the naked eyes, thus,
deep learning emerges as the optimal method for implementing
the motor decoder. Moreover, our analysis shows nerve activity
aligns with human anatomy. Gestures involving flexion of the
thumb, index, and middle fingers show prominent activity on
channels associated with the median nerve, whereas gestures
involving flexion of the ring and little fingers exhibit stronger
signals from channels linked to the ulnar nerve. This further
underscores the capability of the Scorpius system to capture
nerve signals with sufficient detail for decoding the intended
movements of individual fingers.

B. Deep Learning AI Outperforms Conventional Machine
Learning in Decoding Motor Intent

Figure 7(A, B) shows a performance comparison between
the proposed offline AI neural decoder, a convolutional neural
network (CNN) with a similar architecture, and three con-
ventional machine learning techniques: support vector ma-
chine (SVM), random forest (RF), and multi-layer perceptron
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Fig. 7. (A) Mean square error (MSE) and (B) variance accounted for (VAF) metrics demonstrate that the proposed AI neural decoders outperform other
methods. (C) Example of 15-DOF predictions mapped onto a virtual hand.

(MLP). Performance is evaluated using two quantitative met-
rics: mean square error (MSE) and variance accounted for
(VAF). The results clearly show that deep learning models
(RNN and CNN) consistently outperform traditional machine
learning methods across all 15 DOF. These findings highlight
both the complexity of motor intent information encoded
in nerve signals and the superior capability of deep neural
networks in decoding such information. Among deep learning
models, RNN achieves better performance than the CNN,
further validating its suitability for time-series data. For most
DOF with substantial movements (D5–D15), RNN achieves
VAF scores of 0.7–0.9 (on a scale of 0 to 1), which corre-
sponds to near-natural movements of individual fingers.

Figure 7(C) shows an example of 15-DOF predictions from
all models mapped onto a virtual hand (MuJoCo). This visu-
alization highlights the high performance standard required
for AI neural decoders in neuroprosthetic applications. To
generate correct hand gestures and lifelike movements, the
decoder must consistently and accurately predict all DOF. Any
decline in the accuracy of a single DOF could result in a
suboptimal user experience. This requirement becomes even
more critical when deploying the prototype neuroprosthetic
hand, where the amputee uses the AI neural decoder to
perform real-time control of the prosthetic hand during various
daily living tasks.

C. AI Neural Decoder Enables Real-Time Control of Individ-
ual Prosthetic Fingers

Figure 8(A, B) shows the prediction results and quantitative
metrics of the online AI neural decoder on the validation
dataset. The proposed AI neural decoder achieves an accuracy
of 95–96% across five fingers. Feedback from the amputee
during real-life use indicates that this level of accuracy is
critical for achieving robust and reliable control of the pros-

thetic hand. While increasing the model size could potentially
improve accuracy, it would also increase prediction time
and latency when running on the Jetson Nano, leading to
unresponsive performance of the prosthetic hand. At its current
state, the decoder’s performance appears to be limited by the
hardware capabilities. The results also reveal that certain hand
gestures are predicted with higher accuracy than others, which
correlates directly with the SNR of the nerve signals during
those gestures.

Figure 9 shows the patient testing the prototype neuro-
prosthetic hand in various real-life environments, including
the lab, the office lobby, lounge, and at home. The system
operates as a fully self-contained unit, with all data acquisition,
processing, and decoding performed onboard the prosthetic
hand. In the attached video, the amputee uses the able hand to
show his movement intent to outside observers, which gives
a sense of the system’s accuracy and responsiveness. He also
tests the prosthetic hand’s robustness across various postures,
including holding the arm straight out or up, which introduces
considerable EMG noise. While the patient reports a slight
change in responsiveness during these conditions, there is no
significant degradation in motor decoding accuracy. The real-
world settings introduce various potential noise sources, such
as WiFi signals, cellphones, and electrical appliances, that
could impact the neural recorder and overall system perfor-
mance. However, during several hours of continuous operation,
no significant performance issues or accuracy degradation are
observed, demonstrating the system’s robustness and reliability
in diverse environments.

IV. DISCUSSIONS & FUTURE WORKS

A. Human-Machine Symbiosis

This study exemplifies a significant step toward achieving
true human-machine symbiosis by seamlessly integrating neu-
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Fig. 8. (A) Prediction results and (B) quantitative performance metrics of the online AI neural decoder on the validation dataset.

Fig. 9. (A–E) The amputee tests the prototype neuroprosthetic hand in various real-life environments. See video at https://www.youtube.com/watch?v=
xxT2dT42cww or scan the QR code above.

ral interfaces with advanced AI for intuitive neuroprosthetic
control. The ability to decode motor intent directly from
peripheral nerve signals and provide real-time, lifelike control
of a prosthetic hand represents a profound merging of human
biology and machine intelligence. This work explores the po-
tential of technology to extend human capabilities and restore
lost functions in a way that feels natural and intuitive to the
user. Such integration could pave the way for next-generation
assistive devices that do not merely replace lost functionality
but instead work harmoniously with the user, offering a
new standard for prosthetic and rehabilitative technologies.
These advancements highlight the transformative possibilities
of combining bioelectronics, machine learning, and robotics to
bridge the gap between human intent and machine execution,
further blurring the line between human and machine.

B. Further Development

To advance this technology further, several critical areas re-
quire development. First, the neural interface should transition
from an external setup to a fully implantable device, enhanc-
ing long-term usability and patient comfort. An implantable

solution would minimize external components, reduce risks
of infection, and provide a more seamless integration into
the user’s daily life. Second, the neuroprosthetic hand must
be optimized for extended, full-day use, addressing durabil-
ity, energy efficiency, and ergonomic design. This includes
improving battery management systems to extend operational
hours without compromising portability or functionality. Ad-
ditionally, advancements in wireless data transmission and
onboard data processing are essential to eliminate the need
for tethered connections, reduce latency, and support real-
time control in diverse environments. These improvements
would significantly enhance the practicality and usability of
the system. Larger-scale clinical trials are also necessary to
rigorously evaluate the safety, reliability, and effectiveness of
the system in real-life conditions. These trials would provide
valuable insights into user experience and long-term perfor-
mance, ensuring the technology meets the needs of patients
across various scenarios.

https://www.youtube.com/watch?v=xxT2dT42cww
https://www.youtube.com/watch?v=xxT2dT42cww
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V. CONCLUSION

In conclusion, this study represents a significant advance-
ment in neuroprosthetic technology, achieving three key break-
throughs. First, we develop a neural interface capable of
acquiring high-fidelity peripheral nerve signals and enabling
access to rich neural information to pave the way for more
intuitive prosthetic control. Second, we leverage deep learn-
ing AI to decode motor intent from peripheral nerve data.
Our system achieves high accuracy in predicting multi-DOF
movements, surpassing conventional machine learning meth-
ods. This demonstrates the transformative potential of AI in
interpreting complex neural patterns for precise prosthetic
control. Third, we demonstrate a portable, self-contained, AI-
powered neuroprosthetic hand. Integrating all components -
including neural signal acquisition, on-board AI decoding,
and motor control - into a compact, standalone system high-
lights the feasibility of real-world deployment. The device
enables intuitive, real-time control and provides a practical
solution for amputees to perform daily tasks seamlessly. These
breakthroughs collectively mark a critical step toward creating
truly lifelike, intuitive prosthetic systems. By bridging human
peripheral nerves with AI and robotics, this work lays the
foundation for next-generation neuroprosthetics that restore
functionality and improve quality of life for individuals with
motor impairments.
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