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Abstract
The increasingly decentralized and private nature of data in
our digital society has motivated the development of collabo-
rative intelligent systems that enable knowledge aggregation
among data owners. However, collaborative learning has only
been investigated in simple settings. For example, clients are
often assumed to train solution models de novo, disregard-
ing all prior expertise. The learned model is typically rep-
resented in task-specific forms that are not generalizable to
unseen, emerging scenarios. Finally, a universal model repre-
sentation is enforced among collaborators, ignoring their lo-
cal compute constraints or input representations. These lim-
itations hampers the practicality of prior collaborative sys-
tems in learning scenarios with limited task data that demand
constant knowledge adaptation and transfer across informa-
tion silos, tasks, and learning models, as well as the utiliza-
tion of prior solution expertise. Furthermore, prior collabo-
rative learning frameworks are not sustainable on a macro
scale where participants desire fairness allocation of bene-
fits (e.g., access to the combined model) based on their costs
of participation (e.g., overhead of model sharing and training
synchronization, risk of information breaches etc.). This ne-
cessitates a new perspective of collaborative learning where
the server not only aggregates but also conducts valuation of
the participant’s contribution, and distribute aggregated infor-
mation to individuals in commensurate to their contribution.
To substantiate the above vision, we propose a new research
agenda on developing effective and sustainable collaborative
learning frameworks across heterogeneous systems, featuring
three novel computational capabilities on knowledge organi-
zation: model expression, comprehension and valuation.

1 Introduction
Modern problem-solving systems are frequently integrated
into a complex and diverse information network. For in-
stance, think of a smart health monitoring system, e.g. (Has-
santabar et al. 2020), that compiles and disseminates ana-
lytical findings derived from a wide range of patient data.
This data is often scattered across various hospitals, clin-
ics and numerous personal medical wearable devices. All
of which may have unique ownership, hardware setups
(e.g., compute and communication bandwidths), data distri-
butions (e.g., patient demographics) and collection mecha-
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nisms (e.g., which signals are being monitored). We refer to
these different aspects as system heterogeneities.

As these private data sources are not centrally owned,
privacy-preserving and privacy-compliant knowledge shar-
ing technologies have become basic requirements to facil-
itate AI collaboration. To this end, federated learning (FL)
proposes to combine information from private data silos af-
ter they have been distilled into a common representation, or
more simply the weights of a learning model (Konečný et al.
2016; McMahan et al. 2017). However, there are many gaps
between the vanilla FL setting and its practical use cases.
For instance, the shared learning model might not simulta-
neously fit the various local client constraints (e.g., compute
capacities and input representations). Further, FL is assumed
to train solution models from scratch and does not build on
prior knowledge. Learned knowledge might also be repre-
sented in task-specific forms (e.g., models trained on specific
data), and is consequently not generalizable or adaptable to
unseen task scenarios.

The limitations above do not align with the requirements of
continual collaborative learning, which demands adaptabil-
ity and transferability of knowledge across various informa-
tion silos, tasks, and learning models. For example, consider
the smart health monitoring scenario above where personal
devices summarize patient statistics for diagnosis and treat-
ment. Patients use various monitoring devices, requiring the
system to handle diverse data representations. The predic-
tion models must also be adaptable to new, emerging dis-
eases with limited data. This is not possible without a rep-
resentation that can robustly accommodate such system and
data heterogeneities, as well as a corresponding resource-
aware knowledge aggregation mechanism that can consoli-
date, leverage and adapt prior solution expertises to combat
data scarcity in new task context. Furthermore, most exist-
ing works in collaborative learning have not considered its
sustainability on a macro scale of an ecosystem, featuring
a large, ever-growing crowd of continual or lifelong learn-
ing agents in business competitive scenarios such as smart
health monitoring where information sharing essentially re-
quires cooperation across different monitoring platforms de-
veloped by different for-profit organizations. For such learn-
ers, their key concern is whether the benefit (e.g., access to a
better combined model) derived from the collaboration out-



Figure 1: Overview of our proposed collaborative learning framework with key research thrusts C1, C2, C3 and C4 highlighted.

weighs the cost of participation (e.g., overhead of training
synchronization and/or model sharing, risk of private infor-
mation breaches etc.). To mitigate this concern, an appropri-
ate incentivization mechanism is needed to ensure fair ben-
efit distribution and hence, sustained engagement from the
participants.

To bridge this gap between federated learning and its po-
tential application to such continual collaboration scenar-
ios, we envision a task-agnostic and resource-aware frame-
work for model representation and aggregation. Within this
framework, pre-trained models capturing related expertises
are broken down into a diverse set of task-agnostic func-
tions, each associated with distinct task embedding patterns.
Local solution models can then be represented using sub-
sets of these functions, selected based on their proximity to
the task data. This approach transforms model aggregation
into a set summarization problem, affording it the desirable
adaptability, transferability, and compositionality across dif-
ferent information silos and tasks with different model and
data representations. The current progress and specific di-
rections of the envisioned research are detailed next.

2 Robust Collaborative Learning
Our proposed research agenda will focus on developing
several key computational capabilities, namely expression,
comprehension and valuation, that enable effective com-
munication among collaborative learners with heteroge-
neous models or knowledge representations. First, expres-
sion pertains to a learning collaborator’s capacity to de-

termine what information to communicate to facilitate the
global decomposition of local models into reusable patterns.
On the other hand, comprehension focuses on the ability
to grasp the semantic associations and compositionality of
these patterns. Last but not least, valuation grants partici-
pants clarity to assess whether the benefit derived from the
collaboration (e.g., model utility) is worth the cost of par-
ticipation (e.g., overhead of model sharing and training syn-
chronization, risk of information breaches, etc.). This is es-
sential to ensure sustained engagement of learning partici-
pants through proper incentivization. For example, based on
such fair valuation mechanism, learning agents that provide
more useful information should be allocated more band-
width to access the combined model than others. Such ca-
pabilities on model expression, comprehension, and val-
uation will form the backbone to a sustained collabora-
tive learning ecosystem in large scale. This vision will be
substantiated by the following research agenda. Its overall
workflow is depicted in Fig. 1.

C1. Model Expression: We will focus on devising effective
algorithms that factorize pre-trained black-box models into
a set of task-agnostic and comprehensible predictors called
prototypes (Hoang et al. 2019a,b, 2020; Lam et al. 2021).
This allows us to represent prior problem-solving expertise
in a modular and transferable fashion, where distinct knowl-
edge patterns are captured by these context-independent
model prototypes and can be recombined to synthesize novel
solutions to new task contexts. This will re-imagine the ex-
isting paradigm of model fine-tuning, producing models that



are both effective and interpretable when adapting to new
tasks, which is crucial in pre-training and fine-tuning with
foundation or large pre-trained models.

One potential direction, as previously investigated by Hoang
et al. (2020), is to find a task-agnostic embedding of the pre-
trained models Bτ1 ,Bτ2 , . . . ,Bτp on a factorized (latent)
space H = W×Z where Z encodes task-agnostic concepts
that underline the black-box’s inferential mechanism while
W isolates generic input patterns from Z. This is achieved
via using a probing, unlabeled dataset U to sample the in-
ferential patterns of the pre-trained models, which are ex-
pressed in terms of a collection of triplets (x, η, τ). Here, x
and η denote the corresponding input and (soft) output of Bτ

while τ encodes the task information (e.g., one-hot vectors
representing task identities or context prompt engineered by
domain experts).

As a concrete example, consider the problem of handwrit-
ten digits classification, we want to encourage the following
behavior in our model: z encodes the information central
to making predictions (i.e. the numerical value of the digit)
whereas w encodes information that does not influence the
prediction, such as the width and tilt of the strokes, the light
intensity of the images, and other abstract stylistic proper-
ties. We want to find an embedding of such probing data
on the aforementioned factorized space H = W × Z from
which task-agnostic prototypes can be derived.

x η

w z

τ

(x, η) ∼ Bτ

τ ∼ p(τ)

x η

w z

τ

(x, η) ∼ Bτ

τ ∼ p(τ)

(a) (b)

Figure 2: Graphical models of (a) the generative and
(b) inference networks – p(w, z,x, η, τ ; θ, γ, α) and
q(w, z|x, η, τ ;ϕ), respectively – in our model embedding
framework. The dashed arrows in (b) indicate the posterior
surrogates that form the inference network.

Under this modeling paradigm (see Fig. 2a), we adopt the
following parameterization for p(w, z,x, η, τ ; θ, γ, α),

p(w, z,x, η, τ ; θ, γ, α) ≜ pθ(x|w, z)pγ(w|τ)
pα(η|z)p(τ)p(z) , (1)

where θ, γ, α denote an abstract parameterization often im-
plemented in form of a (deep) neural network. Thus, learn-
ing this representation means learning (θ, γ, α) that best ex-

plains the observations (x, η, τ) which were collected by ob-
serving the prediction of Bτ1 ,Bτ2 , . . . ,Bτp at the unlabeled
data x ∈ U. This is often learned via a variant of variational
auto-encoder (VAE) (Kingma and Welling 2013) which ex-
ploits a parameterized inference network (see Fig. 2b),

qϕ(w, z|x, τ, η) ≜ qϕ(z|x, η) qϕ(w|x, τ) , (2)

to define and maximize a variational lower-bound of the
probing data’s likelihood. The learned generative model can
then be used to express any pre-trained model Bτ ≡ p(η |
x, τ) in terms of an integration over a spectrum of task-
agnostic prototypes via the fundamental laws of probability,

p(η|x, τ) ∝ Ew∼pγ(w|τ)

[
gw (η|x; θ, α)

]
, (3)

where gw(η|x; θ, α) denote a task-agnostic prototype, which
is expressed as an integration over z,

gw(η|x; θ, α) = Ez∼p(z)

[
pθ(x|w, z)pα(η|z)

]
, (4)

which can be synthesized to solve an unseen task τ∗,

Bτ∗(x) = Ew∼pγ(w|τ∗)

[
argmaxη gw(η|x; θ, α)

]
. (5)

Nonetheless, while Eq. (5) can be approximated reasonably
well following the preliminary experiments in (Hoang et al.
2020), its complexity will explode exponentially in the size
of the latent coordinates w, which is however essential to
embed pre-trained models with highly sophisticated param-
eterization on complex data spaces.

A potential approach to mitigate this is to generalize the
aforementioned technique to the context of prompt-based
or adapter-based fine-tuning framework which interestingly
represents customized solutions in terms of a set of (learn-
able) input prefixes (Wang et al. 2021) to a transformer-
based pre-trained model or a set of light-weight, low-
complexity neural adapters (Hu et al. 2021) used to re-
place the pre-trained computation workflow of some exist-
ing neural blocks (e.g., the pre-trained model’s prediction
head). Alternatively, we will also investigate more direct ap-
proaches that leverage pre-trained models’ outputs on target
inputs and/or their (learnable) ensemble to enable in-context
learning or soft-prompt generator for existing prompt-tuning
framework, following our recent findings in few-shot learn-
ing with black-box ensemble (Hoang and Hoang 2024).

C2. Model Comprehension: To complement the above re-
search thrust, model comprehension focuses on developing
statistical techniques to associate, align and re-combine rel-
evant prototypes extracted from different pre-trained mod-
els (Yurochkin et al. 2019a; Hoang et al. 2020; Lam et al.
2021) to solve new tasks. This is a key issue in contin-
ual and/or federated learning scenarios with data, model
and/or system heterogeneities which result in a diverse range
of local representations of knowledge. Although the re-
search in C1 can be repurposed to embed and decompose
such heterogeneous knowledge representations into context-
independent prototypes, the key issue here is, however, the
partial accessibility of local knowledge per learning epoch
due to the nature of continual and federated learning.



For example, in continual learning, the learning agent only
has access to local data/solution of a single task per step. In
cross-device federated learning, only a small subset of learn-
ing agents (e.g., local devices) will participate in knowl-
edge aggregation. This will inevitably create asymmetries
in the knowledge representation across agents and learn-
ing epoches. To mitigate this, the learning agents need to
infer the correspondence between knowledge modules that
were distilled in different contexts and orders. Addressing
this helps re-imagine the knowledge aggregation mechanism
in federated and/or continual learning as a distributed or
streaming (random) set modeling task. This has been pre-
viously investigated in the context of neural networks that
decompose into sets of neurons (Yurochkin et al. 2019a,b).
Local neurons can then be communicated among learning
agents and partitioned into clusters whose centers are lever-
aged to derive aggregated neurons which can be assembled
into a better model. Such approaches are applicable to tradi-
tional feed-forward, convolutional and recurrent neural nets
but were not designed to work with more recent modern ar-
chitectures such as self-attention (Vaswani et al. 2017).

The main focus in this thrust is therefore to develop more ro-
bust and versatile random set modeling frameworks that are
generalizable to modern architectures. For example, multi-
head attention in transformer (Vaswani et al. 2017) can
be re-characterized in terms of a sparse Gaussian process
model (Bui et al. 2024), which are represented by its set
of inducing inputs. Our previous work in (Yurochkin et al.
2019b) has in fact shown that it is possible to extend the
above neuron clustering scheme to inducing input clustering
to aggregate sparse Gaussian processes across local learning
agents. This allows for a broader generalization from neuron
clustering to prototype clustering, whose characterization is
expressed in terms of solutions to certain optimization tasks,
which is even more sophisticated. We will further investi-
gate whether such characterization can also be cast into the
aforementioned set modeling framework. We envision that
the rich literature on probabilistic set modeling frameworks
and/or their applications to (streaming) clustering scenarios
can be leveraged to drive research in this direction. We will
also investigate a more direct generalization of our previ-
ous work (Yurochkin et al. 2019a,b) to prompt-tuning con-
text whose solutions are naturally characterized in terms of
prompt sets, which are readily integrable into the envisioned
set modeling framework.

C3. Model Valuation: The value of knowledge summaries
(e.g., how useful they are to others) must be quantifiable, so
that individual contribution of participants can be assessed.
The aggregated knowledge must be distributed such that
benefits are proportionate to individual contributions. Data
valuation has previously been proposed to address fairness
in federated learning (FL). However, prior literature (Wang
et al. 2020; Li et al. 2023; Wei et al. 2020; Fan et al. 2024)
has not considered cases in which data appraising techniques
need to assess value of data from heterogeneous data sum-
maries (e.g., simulation processes and data-driven models).
Most works in this space assume direct access to data or a
common model derivative of the data. This assumption is

however impractical in real-world domains that require het-
erogeneous formulations for different aspects of the same
task (Wang et al. 2020; Ghorbani, Kim, and Zou 2020; Ghor-
bani and Zou 2019; Yoon, Arik, and Pfister 2019; Sim et al.
2023). For instance, in smart farming, spatio-temporal varia-
tion models of crop yield prediction might be formulated dif-
ferently across collaborating farms, such as using biophys-
ical simulation systems or training machine learning mod-
els to predict unknown behaviors from collected data. Local
participants might also employ different sensor instruments
with distinct data types (e.g., photos of crop field, soil pH,
atmospheric condition) and resolutions (e.g., density of sen-
sors, measurement precision) which inevitably leads to mod-
els with heterogeneous forms (Dhanaraju et al. 2022).

An effective collaborative learning system is therefore cen-
tered on an effective knowledge fusion operator and a com-
putationally accessible notion of information value for any
aggregable subset of data summaries. This notion must char-
acterize consistent appraisals. That is: (a) a subset of data
summaries cannot be more valuable than any of its super-
sets; and (b) an aggregated model distributed to an agent is
at least as valuable as its individual data summaries. Algo-
rithms that compile and generate aggregations of data sum-
maries can be developed based on this notion to guarantee
fair incentives for participating individuals.

Our recent investigation (Sim et al. 2023) achieved this us-
ing differential privacy (DP) (Mironov 2017) as an incentive.
Each participant can select its required DP guarantee and
sanitize its sufficient statistic (SS) of the local model with
algorithmically crafted noises. The server values such per-
turbed SS using a notion of Bayesian surprise (Itti and Baldi
2009), which characterizes how much new information a lo-
cal participant contributes. Intuitively, a higher DP guaran-
tee requires higher order of perturbation which reduces the
informativeness of the shared SS. Once the shared SS are ag-
gregated, the server will distribute information to each par-
ticipant via different posterior samples of the model’s pa-
rameters (via the aggregated SS), which are algorithmically
calibrated to ensure the derived amount of information is
proportion to the participant’s contribution. Such privacy-
valuation trade-off will deter participants from selecting ex-
cessive DP guarantees that reduce the combined model’s
utility. Despite this initial success, there remains significant
room for improvement. First, this approach is restricted to
simple models (e.g., Bayesian linear regression) whose suffi-
cient statistics can be derived analytically and a single round
of information sharing, which is a simplified, one-shot com-
munication of federated learning. Second, it has not con-
sidered the truthfulness of submitted information and value
data as-is. Last, its contribution valuation requires exhaus-
tive enumeration of subsets of participants which does not
scale well to large collaborative learning networks. Research
in this thrust will focus on addressing these challenges, im-
proving its integrability to large-scale scenarios.
C4. Robust and Sustainable Collaborative Learning:
Leveraging the preliminary insights and envisioned contri-
butions from C1, C2 and C3 (Hoang et al. 2019a; Yurochkin
et al. 2019a,b; Hoang et al. 2020; Lam et al. 2021; Bui et al.



2024; Hoang and Hoang 2024), we aim to develop a robust
and sustainable solution framework for collaborative learn-
ing within an ever-growing ecosystem of learning agents
that seek to communicate and reuse relevant knowledge to
collaboratively solve their respective tasks. This will com-
plement existing works (Collins et al. 2021; Li et al. 2021;
Karimireddy et al. 2020; Hanzely and Richtárik 2020) in FL
context which has not considered utilizing such prior knowl-
edge. Furthermore, with the emergence of foundation mod-
els which encapsulate vast expertise, a key challenge lies
in addressing the sheer scale of these models and seam-
lessly integrating them into our envisioned resource-aware
collaborative learning framework. One important technical
aspect that needs to be considered is a potential mismatch
between the computational demand of the aforementioned
research and the on-board compute capacities of device par-
ticipants (e.g., drones, wearable devices) in numerous practi-
cal scenarios. Another key aspect is the various system con-
straints across devices (i.e., data collection and model train-
ing bandwidth and schedule) which will inevitably create
severe data skewness, scarcity and asynchronous informa-
tion sharing and update. This could lead to or worsen the
impact of catastrophic forgetting due to partial accessibility
of local knowledge per learning epoch. The dependence on
a single coordinating server also represents another critical
constraint, which could result in a computational bottleneck,
lacking resilience to unstable, erroneous communication. To
mitigate this, a decentralized collaborative learning frame-
work is a potential solution, which were previously investi-
gated in a simplified, one-shot federated learning with spe-
cific model representation (Hoang et al. 2019b). Part of the
envisioned research in this thrust will focus on generalizing
the aforementioned research agenda to remove the necessity
of the coordinating server, making knowledge communica-
tion peer-to-peer and more resilient against erroneous and
unstable communication channels.
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